Graphs

\qquad

Motivation

Use:

- Computation of distances
- Finding of cycles in dependencies \qquad
- Detection of connections
- Time management

Concept:

- Generalization of trees
- Special two-values relation

Definition:

A Graph consists of: \qquad

- Set N of vertices (nodes)
- 2-values relation $R: A \rightarrow N$, whereas A ... set of edges (lines)
consequence: Edges are given by pairs of nodes \qquad 2007 Jiri Spale, Algorithms and Data Structures - Graphs 22

Items

\qquad

- path:
$\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right)$,
$\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \in \mathrm{A}$ \qquad
- path length (=Number of edges): $n-1$,
n ... Number of nodes
- loops:
$\left(\mathrm{v}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}, \mathrm{v}\right)$
$\mathrm{n}+1$
each node occurs only once nodes occur multiple times contains at least 1 loop \qquad
- cyclic graph: contains not one loop
not one node occurs multiple times
the number of vertices (nodes)
\qquad
- acyclic path:
\qquad

Directed graph

Edges are oriented:
Notation:
$(\mathbf{u}, \mathbf{v}) \equiv \mathbf{u} \rightarrow$

$$
\begin{array}{ll}
\text { tail } & \text { head } \\
\text { predecessor } & \text { successor }
\end{array}
$$

Example:

Directed graph: Definitions

- Designation of nodes and angles

$$
\text { Dog bites } \longrightarrow \mathrm{Cat}
$$

Nodes are unique serially numbered, but they can have the same designation

Vertex (node)

- Output degree: Number of edges outgoing from the vertex
- Input degree: Number of edges incoming to the vertex
- Degree: \quad Sum input degree + output degree \qquad
Graph
- Degree of a graph: $\max _{i \in N}\left(\operatorname{Grad}_{i}\right)$

2007 Jiri Spale, Algorithms and Data Structures - Graphs $\quad 5$ Mocasomine

Undirected graph \qquad

Definition:
If $\left(v_{i}, v_{j}\right) \in A$, then $\left(v_{j}, v_{i}\right) \in A$ as well.
u and v are adjacent,
respectively u and v are neighbor-vertices.

07 Jiri Spale, Algorithms and Data Structures - Graphs
-

Implementation of graphs

- Standard list

(number of vertices, number of edges, starting point, ending point of every edge) Example: $(5,10, \underbrace{1,1}, \underbrace{1,2}, 1,3,2,4,3,1,3,2,3,5,4,3,5,2,5,4)$
$\underbrace{}_{n_{0}} \underbrace{}_{n_{4}} \underbrace{1}_{a_{1}}, \underbrace{}_{a_{2}}, \underbrace{1,2}_{a_{3}} \underbrace{1,}_{a_{4}}, \underbrace{2,4}_{a_{5}}, \underbrace{3,}_{a_{6}}, \underbrace{3,2}_{a_{7}}, \underbrace{3,5}_{a_{8}}, \underbrace{4,3}_{a_{9}}, \underbrace{5,2}_{a_{10}}$

- Edge-oriented list

(number of vertices, number of edges, for every vertex: output degree, targets)
Example: $\underbrace{(}_{n_{1}} \underbrace{5,10,3,1}_{k_{1}}, \underbrace{2,3}_{k_{2}}, \underbrace{1,4,3,1}_{k_{1}}, \underbrace{2,5}_{k_{1}}, \underbrace{1,3,2}_{k_{3}}, 2,4)$
\bullet Adjacency list - Adjacency matrix
Example:

\qquad
\qquad
\qquad

Estimation of memory space

\qquad

- Adjacency list
$\left(n_{n}+2 n_{a}\right)$ words, $\quad n_{n} \ldots$ number of vertices \qquad
$n_{a} \ldots$ number of edges
- Adjacency matrix
$\mathrm{n}_{\mathrm{n}}{ }^{2} / 32$, @ word length $=32$ bit

Estimation
$\mathrm{n}_{\mathrm{n}} \ll 2 \mathrm{n}_{\mathrm{a}} \Rightarrow \mathrm{n}_{\mathrm{n}}+2 \mathrm{n}_{\mathrm{a}} \approx 2 \mathrm{n}_{\mathrm{a}}$;
$2 \mathrm{n}_{\mathrm{a}}<\mathrm{n}_{\mathrm{n}}{ }^{2} / 32 \Rightarrow \mathrm{a}<\mathrm{n}^{2} / 64 \ldots$ Liste besser \qquad
\qquad
2007 Jiri Spale, Algorithms and Data Structures - Graphs 8 Hens.

Neustadt	2	35	3	20		25		$\left(\begin{array}{cccc}-1 & 35 & 20 & 25 \\ 35 & -1 & -1 & 40 \\ 20 & -1 & -1 & 30 \\ 25 & 40 & 30 & -1\end{array}\right)$								
Freiburg	$\rightarrow 1$	35	4	40	0											
Donaueschingen		20	$\rightarrow 1$	30	0											
4 Furtwangen	$\rightarrow 1$	25		40	$\rightarrow 3$	30										

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Interrelated components \#1

\qquad

Definition:

Interrelated component: $\left\{\right.$ Vertices $\mathrm{K}_{\mathrm{i}} \mid \mathrm{K}_{\mathrm{i}}$ reachable from K_{j} \} \qquad
Interrelated graph: has at least 1 interrelated component
\qquad
Analysis of interrelated components:
$\underset{\substack{\text { Stand alone } \\ \text { vertex }}}{\mathrm{G}_{0}} \rightarrow \underset{\substack{\text { I connection } \\ \text { considered }}}{\mathrm{G}_{1}} \rightarrow \quad \rightarrow \quad \mathrm{G}_{2} \quad \rightarrow \quad \cdots \quad \rightarrow \underset{\substack{\text { all connaction } \\ \text { evaluated }}}{\mathrm{G}_{\mathrm{a}}}$

Interrelated components \#2

\qquad

[^0]\qquad
\qquad

Interrelated components \#3

Graphical construction:

- Beginning: stand-alone vertices as auxiliary graph G_{0}

On inspection of every new edge a_{i} a new auxiliary graph G_{i} will be drawn
Interrelated components in G_{i} will be constructed as trees

- Tree order = max. output degree of the vertex \qquad
To which interrelated component affiliates the vertex K_{i} ?
Find K_{i} in G_{i}, the root of $\mathrm{G}_{\mathrm{i}}=$ interrelated component
Merging of 2 interrelated components:
The root of one component comes to be child of the root of another component
\qquad

Example

Graph G consisting of 3 interrelated components:
3 $\stackrel{a_{1}}{6} \quad 1 \stackrel{a_{2}}{4} \frac{a_{3}}{7} \quad 2 \frac{a_{4}}{5}$

Auxiliary graphs to detection of interrelated components: components

Example (continuation) \qquad

		Number of interrelated
	5	4
		3
2007 Jiris Sple. Algoritms and Data Stracues - Graphs		neme

\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: Derivation:
 Basis:
 G_{0} consists of vertices from G only, without any edges Each vertex presents a single component

 ## Induction assumption:

 $\mathrm{G}_{\mathrm{i}} \ldots$ Graph to exposition of interrelated components, after evaluation of the first i edges. Contemplating now (u, v), the $i+1$ edge in G :
 a) $u, v \in$ of the same component of $\mathrm{G}_{\mathrm{i}} \Rightarrow$
 G_{i} and G_{i+1} contain the same amount of interrelated components (the new $i+1$ edge connects not any edges, which are not already connected)
 b) $\mathrm{u}, \mathrm{v} \in$ of different components of $\mathrm{G}_{\mathrm{i}} \Rightarrow$
 the component including u and the component including v will be merged
 Proof:

 2007 Jiri Spale, Algorithms and Data Structures - Graphs
 "च

