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Graphs
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Motivation
Use:
• Computation of distances

• Finding of cycles in dependencies

• Detection of connections

• Time management

Concept:
• Generalization of trees

• Special two-values relation

Definition:

A Graph consists of:

• Set N of vertices (nodes)

• 2-values relation R: A→N, whereas A … set of edges (lines)

consequence: Edges are given by pairs of nodes
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Items
• path: (v1, v2, …., vn),

(vi, vj) ∈ A

• path length (=Number of edges): n - 1,

n… Number of nodes

• loops: (v, v1, v2, …., vn, v)

• loop length: n + 1

• simple loop: each node occurs only once

• multiple loops: nodes occur multiple times

• cyclic graph: contains at least 1 loop

• acyclic graph: contains not one loop

• acyclic path: not one node occurs multiple times

• order of a graph the number of vertices (nodes) 
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Directed graph
Edges are oriented: (u,v) ≠≠≠≠ (v,u)

Notation: (u,v) ≡≡≡≡ u →→→→ v
tail      head

predecessor     successor

Example:

1

5

3 4

2

N={1,2,3,4,5}

A={(1,1),(1,2),(1,3),(2,4)

(3,1),(3,2),(3,5),(4,3),(5,2),(5,4)}
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Directed graph: Definitions
• Designation of nodes and angles

Dog Cat
bites

Nodes are unique serially numbered, but they can have the same designation

Vertex (node)

• Output degree: Number of edges outgoing from the vertex

• Input degree: Number of edges incoming to the vertex

• Degree: Sum input degree + output degree

Graph

• Degree of a graph: ( )i
Ni

Grad
∈

max
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Undirected graph

Definition:

If (vi, vj) ∈ A , then (vj, vi) ∈ A as well. 

u and v are adjacent, 

respectively u and v are neighbor-vertices.
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• Standard list

(number of vertices, number of edges, starting point, ending point of every edge)

Example: (5, 10, 1, 1, 1, 2, 1, 3, 2, 4, 3, 1, 3, 2, 3, 5, 4, 3, 5, 2, 5, 4)

• Edge-oriented list

(number of vertices, number of edges, for every vertex: output degree, targets)

Example: (5, 10, 3, 1, 2, 3, 1, 4, 3, 1, 2, 5, 1, 3, 2, 2, 4)

Implementation of graphs

•Adjacency list
Example:

• Adjacency matrix
Example:

2 · 3 01 ··

4 0·

2 · 5 01 ··

3 0·

4 02 ··

1

2

3

4

5






















01010

00100

10011

01000

00111

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10nann

nann k1 k2 k3 k4 k5
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Estimation of memory space
• Adjacency list

(nn + 2na) words, nn … number of vertices

na … number of edges

• Adjacency matrix

nn
2 / 32, @ word length = 32 bit

Estimation

nn << 2na ⇒ nn + 2na ≈ 2na ;

2na < nn
2 / 32 ⇒ a < n2 / 64 … Liste besser

2007 Jiri Spale, Algorithms and Data Structures - Graphs 9

Graph operations
• Searching an edge (verify Existence of an edge):

Matrix: O(1) access 1 element via his indexes

List: O(1) + O(na/nn), worst case na = nn
2

Searching in a vector +

average search time in the list

• Find all successors of a given vertex:

Matrix: O(nn) passing the rows

List: O(1) + O(na/nn), worst case na = nn
2

the same as at “searching an edge”

• Find all predecessors of a given vertex:

Matrix: O(nn) passing the columns

List: O(na) passing all edges
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Marked graphs

2 ··

1 ·

1

3


















−

−−

−−

−

1304025

301120

401135

2520351

1: Neustadt

3: Donaueschingen 4: Furtwangen

2: Freiburg
35

20 40
30

25

1 ·2

1 ·4

Neustadt

·Freiburg

·Donaueschingen

·Furtwangen

35

20

35

25

3 ·

1 0

4 0

2 ·

20

30

40

40

4 0

3 0

25

30

Adjacency list Adjacency matrix
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Interrelated components #1

Definition:

Interrelated component: {Vertices Ki | Ki reachable from Kj}

Interrelated graph: has at least  1 interrelated component

Analysis of interrelated components:

G0 → G1            → G2 → ...     → Ga
Stand alone 1 connection all connection

vertex considered evaluated
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Interrelated components #2
Derivation:
Basis:

G0 consists of vertices from G only, without any edges

Each vertex presents a single component

Induction assumption:

Gi … Graph to exposition of interrelated components, after evaluation of the first

i edges. Contemplating now (u,v), the i+1 edge in G:

a) u, v ∈ of the same component of  Gi⇒
Gi and Gi+1 contain the same amount of interrelated components

(the new i+1 edge connects not any edges, which are not already connected)

b) u, v ∈ of different components of Gi ⇒
the component including  u and the component including v will be merged

Proof:

---
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Interrelated components #3
Graphical construction:
• Beginning: stand-alone vertices as auxiliary graph G0

• On inspection of every new edge ai a new auxiliary graph Gi will be drawn

• Interrelated components in Gi will be constructed as trees

• Tree order = max. output degree of the vertex

To which interrelated component affiliates the vertex Ki ?:

- Find Ki in Gi , the root of Gi = interrelated component

Merging of 2 interrelated components:

- The root of one component comes to be child of the root of another component
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Example

Number of

interrelated

components

Graph G consisting of 3 interrelated components:

3 6 1 4 7 2 5
a1 a2 a3 a4

Auxiliary graphs to detection of interrelated components:

G0 1 2 13 4 5 6 7 7

G1 1 2 13 4 5

6

7 6
(Inspection

of a1)

G2 1 2 13

4

5

6

7 5
(Inspection

of a2)
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Example (continuation)

G3
1 2 13

4

5

67

4

G4
1 2 13

4 5 67

3

Number of

interrelated

components

(Inspection

of a3)

(Inspection

of a4)


