
1

Part 2: Interacting
with the Framework

EclipseZone — Getting Started with OSGi

Neil Bartlett <njbartlett@gmail.com>

Welcome back to the EclipseZone OSGi tutorial series.

Last time we looked at a simple Hello World bundle that printed a message when starting and stopping.
It did that by implementing the BundleActivator interface and providing start and stop
methods. Take another look at the code now, in particular the method signature of start and stop,
and you'll notice that we were passed a parameter, the BundleContext. In this installment of the
tutorial we will be looking at BundleContext and what we can do with it.

BundleContext is a magic ticket that the OSGi framework passes to our bundle. When code needs
to interact with the framework in any way, you will use the BundleContext . In fact this is the
only way to interact with the OSGi API, and the framework issues one of these tickets to each bundle
through its BundleActivator when the bundle is started.

If you still have Equinox running from last time then you don't need to restart it. If it's not running,
then remember the command to start it is:

> java -jar equinox.jar -console

Type ss at the prompt and you should see that the Hello World bundle from last time is still installed.
That's the case even if you have shut down and restarted Equinox since then, because the OSGi frame-
work persists its state between runs. For this exercise we will write a bundle that searches out and
uninstalls Hello World. We could do this easily from the console using the uninstall command,
but we want to see how it can be done programmatically using the OSGi API. So, create a new file
called HelloWorldKiller.java and copy in the following code:

import org.osgi.framework.*;

public class HelloWorldKiller implements BundleActivator {
 public void start(BundleContext context) {
 System.out.println("HelloWorldKiller searching...");
 Bundle[] bundles = context.getBundles();
 for(int i=0; i<bundles.length; i++) {
 if("HelloWorld".equals(bundles[i]
 .getSymbolicName())) {
 try {
 System.out.println("Hello World found, "
 + "destroying!");
 bundles[i].uninstall();
 return;
 } catch (BundleException e) {
 System.err.println("Failed: "
 + e.getMessage());
 }
 }
 }
 System.out.println("Hello World bundle not found");
 }

 public void stop(BundleContext context) {
 System.out.println("HelloWorldKiller shutting down");

Part 2: Interacting
with the Framework

2

 }
}

Now create the manifest. Again, remember the blank line at the end is very important. Copy the
following into HelloWorldKiller.mf:

Manifest-Version: 1.0
Bundle-Name: HelloWorldKiller
Bundle-Activator: HelloWorldKiller
Bundle-SymbolicName: HelloWorldKiller
Bundle-Version: 1.0.0
Import-Package: org.osgi.framework

Now compile and build the Jar:

> javac -classpath equinox.jar HelloWorldKiller.java
> jar -cfm HelloWorldKiller.jar HelloWorldKiller.mf HelloWorldKiller.class

Back at the OSGi console, install the new bundle using install
file:HelloWorldKiller.jar, and then type ss. The status listing should now look like this:

id State Bundle
0 ACTIVE system.bundle_3.2.1.R32x_v20060919
1 ACTIVE HelloWorld_1.0.0
2 INSTALLED HelloWorldKiller_1.0.0

Let's run the Hello World Killer by typing start 2. You should see the following output:

HelloWorldKiller searching...
Hello World found, destroying!
Goodbye EclipseZone Readers!

Notice that the last line of output comes from our original Hello World bundle. Because it was in the
ACTIVE state before we ran the Killer, it had to be stopped before being uninstalled, and that caused
the stop method of its BundleActivator to run.

Taking another look at the output of ss, Hello World has disappeared:

id State Bundle
0 ACTIVE system.bundle_3.2.1.R32x_v20060919
2 ACTIVE HelloWorldKiller_1.0.0

You might wonder if there is a security problem here. It appears that any bundle can uninstall any
other bundle! Fortunately OSGi has a comprehensive security layer which gives fine-grained control
over all interaction with the framework, so for example you could limit the right to uninstall bundles
to a particular "management" bundle. However, getting security working is mostly a configuration
issue, and in this series we're going to focus on the code.

That's it for this installment. Until next time, why not take a look at the BundleContext interface
and see what else you can do with it? For example, you could try programmatically installing a new
bundle using the installBundle method. Or you could get a list of all the currently installed
bundles and print out the time and date they were last modified. To help you get started, check out
the Javadocs for the OSGi Release 4 APIs .

