Part 1: Your First Bundle

EclipseZone — Getting Started with OSGi
Neil Bartlett <nj bartl ett @nai | . conP

Over the next week or two, EclipseZonewill be running aseriesof short posts on OSGi. Taken together
they should form a smooth path into mastering the art of OSGi programming, but each post will
introduce just one new technique and it should be possible to work through in under ten minutes.
Also, we want to show how simple OSGi development can be, so we will not be using Eclipse for
development - just atext editor and the basic command line toolswill do. So, welcometo the " Getting
started with OSGi" series.

Actualy this first post will be alittle longer than the others, because we need to set up a very basic
working environment. Before getting started, we need an OSGi framework to run on. There are three
open source implementations to choose from: Apache Felix, Knopflerfish, and Equinox. The code
we're going to write will beidentical no matter which one you choose, but the instructions for running
it will be alittle different. Since this is EclipseZone we will use Equinox, the runtime that Eclipse
itself is built on. You can pull acopy of it right out of your existing Eclipse installation: just find the
fileorg. ecli pse. osgi _3.2.1. R32x_v20060919. j ar and copy it to an empty directory
(NB the version string might be a little different depending on what version of Eclipse you have).
If you don't have a copy of Eclipse anywhere, then you can download just that Jar file from http:/
download.eclipse.org/eclipse/equinox/.

To keep the commands short, let's rename the Jar fileto equi nox. j ar . Now bring up a Command
Prompt in our development directory and run the command:

> java -jar equinox.jar -console
In afew seconds, the osgi > prompt should appear. Congratulations, you are now running OSGi!

The osgi > prompt gives us access to commands in Equinox to control the framework. If you like,
typehel p to seealist of commands, and have a play with them. Done that? Now typess. Thisisthe
most frequently used command; it stands for "short status' and it shows us the list of bundles that are
installed, and what their current statusis. (A "bundle" isamodulein OSGi terminology. Or if you are
an Eclipse developer, you may know them as plug-ins; bundles and plug-ins are basically the same
things.) Equinox should print out the following:

Framework i s | aunched.

id State Bundl e
0 ACTI VE system bundl e_3. 2. 1. R32x_v20060919

Thistellsusthat thereis one bundleinstalled and active, and it isthe System Bundle. Thisisaspecial
bundle in OSGi that is always present, and it represents the framework itself. Now, we're going to
write our own bundle. In the same directory asbefore, createafilecalled Hel | oActi vat or. j ava
and copy the following code into it:

i mport org.osgi.framework. *;

public class Hell oActivator inplenents Bundl eActivator ({
public void start(Bundl eContext context) ({
Systemout.println("Hello EclipseZone Readers!");

}

public void stop(Bundl eContext context) {
System out . printl n("Goodbye EclipseZone Readers!");
}
}

Part 1: Your First Bundle

A bundle also needs a manifest file that declares various metadata about the bundle, e.g. its name,
version, etc. So create afilecaled Hel | oWor | d. nf and copy the following text into it. Make very
surethat thisfile ends with ablank line, otherwisethej ar command line tool will truncate thefile.

Mani f est-Version: 1.0

Bundl e- Nane: Hell oVorl d

Bundl e- Acti vator: Hell oActi vator
Bundl e- Synmbol i cNanme: Hel | oWor | d
Bundl e-Version: 1.0.0

| mport - Package: org.osgi.framework

Now open a new Command Prompt (because we want to leave OSGi running) and build the Jar with
the following commands:

> javac -classpath equinox.jar HelloActivator.java
> jar -cfmHellowrld.jar Hellowrld.nf HelloActivator.class

Going back into the OSGi console, typei nstall file:Hell owrl d.jar. Thereply should
be"Bundleidis1" . Typess again and you will see the following:

Framewor k i s | aunched.

id State Bundl e
0 ACTI VE system bundl e_3. 2. 1. R32x_v20060919
1 | NSTALLED Hellowrlid_1.0.0

Our HelloWorld bundleisinstalled... but it's not yet active. We'll look into what these states mean in
alater post, but for now we just need to start the bundle by typing start 1 . The"1" isthe ID of
the bundle from the first column. When you do this you should see the message "Hello EclipseZone
Readers!". Now type st op 1 and you will see "Goodbye EclipseZone Readers!". Repeat this until
you get bored. Don't forget to do ss occasionally to see the state of the bundle changing.

What's happening here? Our code implements the Bundl eAct i vat or interface, alowing the
framework to notify us of important lifecycle events. When the bundle is started, the framework calls
thest art method, and when the bundle is stopped, the framework callsthe st op method. The other
thing going on hereisthelinein the manifest file"Bund| e- Acti vat or: Hel | oActi vator",
which tells the framework which classin our bundle is the activator. Normally the name we giveisa
fully-qualified class name, but we were lazy and used the default package.

And that concludes our first installment. See you next time.

